
Development

Coding Professionalism

Your code must work

Never write 3am code: It's crap even if it works,
and that crap will be copied and pasted
everywhere

Never write code when distracted with personal
thoughts

Same analogy for driving, driving needs your
focus, don't drive when distracted
Learn how to manage your time with those
problems. Spend some blocks of time
throughout the day working on both to ease
your mind and allow you to code

Avoid the 'zone'

True the zone will allow you to write more code
however that's not an indicator your more
productive

The zone causes tunnel vision and causes you to
lose sight of the big picture

This will cause you to revisit this code a lot which
defeats the purpose of the increase in code

Pair programming makes it near impossible to
enter the zone

Avoid listening to music and headphones - this
doesn't usually help you code, it helps you stay
in the zone which is undesired

The zone causes you to be rude to interruptions
- extremely unprofessional to be rude

Pairing helps avoid or deal with interruptions to
allow the other to be productive and help you
get back into context after the interruption
TDD helps you stay in context as well, having a
failing test to gain context, this will help with
interruptions

Writers BlockPair Program

Reduce debugging time to a minimumDo this with TDD

Layers constantly retrying cases, surgeons re-opening up
patients are unprofessional

constantly having to debug your code is
unprofessional

No False DeliveryWorst unprofessionalism of all

Your code must solve the problem set for you by
the customer

Not the requirements given, it is up to you to
negotiate with the customer the true solution to
their problem

Your code needs to follow solid engineering
principles

Your code must be readable by other
programmers (clean code)

Help

Help Others

your responsibility to be available to help each
other

unprofessional to sequester yourself in a
cubicle and refuse the queries of others

Your work is not so important that you cannot
lend someone of your time to help others

If needed - set office hours

Offer to help, don't wait to be asked

Accept Help

Mentor junior developers personally

New node

Test Driven Development

It just works!Surgeons don't have to defend hand-washingDevelopers don't have to defend TDD

3 Laws

You are not allowed to write any production
code until you have first written a failing unit
test

You are not allowed to write more of a unit
test than is sufficient to fail -- and not
compiling is failing.

You are not allowed to write more production
code that is sufficient to pass the currently
failing unit test

Benefits

Certainty
tens of unit tests written a day makes me
certain the code works when I wrote and still
works today

Defect Injection Rate
Proven to reduce the amount of bugs
dramatically

Courage
Bad code is scary to fix without unit tests so
often it doesn't get fixed

TDD helps give us courage and the confidant
ability to refactor and fix code

When developers lose their fear of cleaning,
they clean

Documentatin

Each unit test defines how the system should
be used

Unit test displays:

how to create every object

every way that object can be created

how to call every function in the system

every way that those functions can
meaningfully be called

Anything you need to know how to do will be a
unit test

Implicit, constantly updating, constantly added
documentation

Design
Following the laws forces you to be able to test
your code

This forces you to consider and implement good
design qualities

If tests are written after it's written defensively
and will force the implementation to work

Tests written first are written offensively and will
design the objects in the best way possible so
it's easiest to use, forcing good design

TDD is NOT

Religion

Magic Formula

Does not guarantee the benefits and you can
still write bad code with itYou can even write bad tests

Always be practical or appropriate
professionals should never follow a discipline
when that discipline does more harm than good

Practicing

Kata

a precise set of choreographed movements that
stimulates one side of a combatAttempt to practice so much to reach perfection

Practicing over and over how to solve a
particular problem

You already know the solution, but practicing the
problem solving motions of TDD is the goal

Drive common problem/solution pairs into your
subconcious

Examples

The Bowling Game

Integer Square Root

Prime Factors

Word WrapAWESOME Post

Wasa

Two-man kata
Ping-pong pair programming pattern

First person writes a failing test

Second person passes it

Second person writes a failing test

First person passes it

When you both really know the kata
Critique each other's keyboarding and
mousing techniques.

Switch it up and add constraints in the testsspeed & memory

Make it competitive and fun

Randori

free-form combat

Wasa with more than 2 people
People rotate through while the code is
projected on the wall

Can go in order, people can skip, move
around, etc no specific rules just with more
people

Broaden Your ExperienceOpen Source projects

Practice on your own time, its not your
employers responsibility to keep you sharp

Acceptance Testing

Premature Precesion

Business wants to know exactly what they are
going to get, programmers want to know
exactly what they are supposed to deliver

Both want a precision that simply cannot be
achieved

Uncertainty principle
requirements when implemented often aren't
really what is desired in the endobserver effect

Estimation anxiety

Late Ambiguity

AutomatedAlwayswhy?

Cost

Testing ALWAYS gets cut first

Rerunning manual tests are very expensive

Having a product that the customer doesn't
want is very expensive for everyone

Automated acceptance testing is cheap
Can maybe appear more expensive/work but
it's the only way to prove it's working and
continues to work

Who writes them?

Ideally - stakeholders and QA

realistically - business analysts and QAanalysts test happy paths

QA tests unhappy paths

If developers are forced to write them
Should not be the same developer who
implemented it

When to write?
Should be written before the implementation
begins

Mid-sprint should have all the acceptance
tests written and failing

Negotiate

It is your professional responsibility to
negotiate with whom has written the test and
make a better test when necessary

NEVER be passive-aggressive

Example:

X has to run in under 2 seconds

Negotiate on average 2 seconds

"not what requirements say"

realistically though it's the only way

run test 15 times and average is less than 2
seconds

NOT unit testsnot redundanttest things very differently

Testing Strategies

QAShould never find any bugsBut probably still will

Should be a part of the team

Test Automation Pyramid (coverage %)

5% Manual Exploratory
NOT automated, nor scripted

NOT written test plan of this kind of testing

Some teams will have a specialist do this,
others will declare a day or two of 'bug hunting'
to bang on the system

10% System tests
Ultimate integration tests across the entire
system

NOT test business rules

written by system architects and technical leads

20% integration tests

choreography tests - how well the assembly of
components dances together

NOT test business rules

Written by system architects or lead designers
of the system

typically not executed as part of CIUsually apart of nightly/weekly builds

50% component tests
Acceptance tests of specific components

Written by QA and business with assistance
from development

apart of continuous integration suite

100% unit testswritten by programmers for programmers

as close to 100%, generally in the 90s of true
coverage

Collaboration

With Employers
First responsibility is to meet the needs of your
employer

understand business goalscollaborate with managers, business analysts,
testers and other team members to understand

understand the business and keep it afloat

With Programmers

owned codeProgrammers should never own a piece of code

Collective Ownership
Break down all walls of code ownership and
have the team own the code

Pairing

Many programmeres dislike the ideaodd because most pair in emergencies

clearly the most efficient way to solve the
problemtwo heads are better than one

Professionals Pair
Best way to solve problems

Best way to share knowledge with eachotherProfessionals don't create knowledge silos

Best way to review code

Cerebellums
Need to be close to team members

need to hear frustrated mutters, serendipitous
communication

Need to communicate as a unit

Some may work better alone for just themselves
but that doesn't mean the team works better
when you work alone

And its unlikely you work better when you work
aloneProbably just work more comfortably

Behavioral Professionalism

Professionalism

Do no harm

Don't lookout for yourself, lookout for the project
and the customers

We must not create bugs
Impossible?

Human body is more complex and doctors take
an oath to do no harm

QA Should Find Nothing!

All code should be covered with automated unit
tests

100% code coverage Why write code and never test that it works

Professionally proves the system works

Delivering function at the expense of structure is
a fool's errand

You must be able to make changes without
exorbitant costs
Merciless refactoring Make every class you touch slightly better

Always be improving Difficulty to improve is bad design, fix it

Work Ethic

168 Hours per week

40 hours to solve your employers problems

20 hours on your career
3 hours per day

Lunch hour to read

Podcasts while traveling

56 hours for sleep

52 hours for everything else

Minimal list Software Professional should be
conversant with

Design patterns all 24 in the GOF book

Design principles SOLID principles

Methods
XP, Scrum, Lean, Kanban, Waterfall, Structured
Analysis and Structured Design

Disciplines
TDD, Object-Oriented design, Structured
Programming, Continuous Integration and Pair
Programming

Artificats
UML, DFDs, Structure Charts, Petri Nets, State
Transition Diagrams and Tables, flow charts and
decision tables

Continuous Learning

Practice Kata

Mentoring

Know your domain Read a couple books on the new topic

Spend some time with the experts and try to
understand their principles and values

Identify with your employer

Saying No

Professionals speak truth to power, and have
the courage to say no to their managers

Being a Team Player
Telling the truth, committing to realistic
estimates and not backing down is best for
everyone

Don't allow anyone to lie to try to make the team
sound better, its not beneficial to anyone, the
project, the company or the customer

Trying

Admitting you can try harder implies you have
not been trying hard

It applies you and your team to a new
commitment that no one really thinks is
plausible

This will inevitably lead to failure and put the
project in a bad spot Just say no

Don't accept you need to try to meet a date that
is not agreed upon by the team

A professional is already trying, there is no
magic pixie dust to make us work better on
demand
Say no to trying

Response: I could try to levitate, but I promise
you I won't I could try to change lead in to gold I could try to swim across the Atlantic

Don't stop by washing your hands and saying no
If your boss is not taking 'no' seriously, make it
clear his/her boss needs to be told the truth, or
you will tell them

This is for the good of the company, not
yourself, not your boss, for everyone, this is
your professional responsibility and right

Saying Yes

Language of Commitment

Making a Commitment
Say you'll do it

Mean it

Actually do it

Most communicated commitments are never real
commitments

"Yeah, we really need to get some new routers"

Ask a team members to run tests -> "Sure. I hope
to get to it by the end of the day"

But we know we will have to check with him the
next day

Management to the team -> "We have to move
faster"

Which means the team needs to move faster
but management will not do anything toward
that goal

Recognizing Lack of Commitment

Signs of non commitment

"Need/Should"
We need to get this done

I need to lose weight

Someone should make that happen

"Hope/Wish"

I hope to get this done by tomorrow

I hope we can meet again some day

I wish I had time for that

I wish this computer was faster

"Let's" (not followed by "I") Let's meet sometime

Let's finish this thing

How to Commit

"I will... by..." I will finish this by Tuesday

Bad Excuses

It wouldn't work because I rely on person X to
get this done

You can still commit to different parts, and you
should make those apparent and clear

I can sit with Gary for an hour and understand the
dependencies
I can create an interface that abstracts the
module's dependency
I can meet three times this week w/ the build guy
to make sure your changes work well in the
build system
I can create an integration test for the module

It wouldn't work because I don't really know if it
can be done

You can still commit to actions. Instead to
committing to fixing all 25 remaining bugs for a
release:

I can go through all 25 bugs and try to recreate
them
I can sit down with the QA who found each bug to
see a repro of that bug
I can spend all the time I have this week trying to
fix each bug

It wouldn't work because sometimes I just won't
make it

Sometimes this is life, but you need to raise a
red flag as soon as possible to whoever you
committed to

Going to be late for a meeting, as soon as you
know, call your colleague and find a solution,
maybe postpone or change locations

You can work to change the commitment in the
best way possible

A task/bug is more difficult than anticipated, tell
the team and come to a conclusion on how to
move forward. Maybe fix specific pieces that
you have discovered.

Don't allow vagueness

Never say or accept you will try to meet a goal

Don't hope for a goal you don't think is a
certainty. Promise what you honestly need for a
task..

This will force an awkward conversation to make
a change. Maybe you reduce features to meet a
desired deadline. Maybe the deadline gets
moved back.

Potentially being responsibly creative to meet a
deadline can be okay, just don't be the only one
sacrificing

I will work 4 hours on Saturday and work with
Willy Monday, but I will take Tuesday off
because I know I will be useless without a
break.

Time Management

Meetings

Truths
Necessary

Huge Time Wasters

~$200/hr/attendee

Declining

need to use your time wisely

don't accept meetings unless it is a meeting for
which your participation is immediately and
significantly necessary to the job your doing now

You are the only one who can manager your
time, your current project is highest priority, it is
your responsibility to weigh which is more
important

Your management should help keep you out of
unnecessary meetings

Leaving
When the meeting gets boring, leave politely exit that meeting

remaining in a meeting that has become a
waste of time for you and you can no longer
significantly contribute is unprofessional

Have an Agenda and a Goal
When invited, try to get the details of agenda
and how much time is alloted for theam if you can't get this information politely decline

When meeting gets side tracked ask the new
topic be tabled and the agenda be followed

if this doesn't happen you should politely leave
when possible

Arguments/Disagreements

Data is the best way to argue, not relentless
arguing

Run experiments or do some simulation or
modeling

Sometimes flipping a coin is best
If one path works out great, otherwise you can go
down the other path
Pick a time frame in which to decide if path's
need to change

Passive aggressive behavior is unprofessional
'This is how he wants it so this is how he will
get it'

If an argument must truly be settled, ask each of
the arguers to present their case to the team in
5 minutes have the team vote whole meeting will take less than 15 min

Focus-Mana

Good nights sleep

Moderate caffeine

Recharging

long walk

conversation w/ friends

meditate

power nap

listen to podcast

Muscle focus

bike riding

carpentry

building models

gardening

Pomodoro Technique 25 minute timer
politely decline all interruptions to get back to
them within 25 min

Avoidance

Priority Inversion Convincing yourself something else is more
important to avoid doing the real work
Unprofessional - Don't do!

Blind Alleys technical pathways that will lead no where

The Rule of Holes: When you are in one, stop
digging

Estimation

What Is an Estimate?

Business sees them as Commitment

Commitment must achieve no matter what it takes

Professionals don't commit unless they KNOW
they can achieve the goal

Developers sees them as Guesses Estimate

A Guess

no commitment is implied no promise is made

Professional needs to be careful not to make
any implied commitments with estimates

Missing an estimate is no dishonorable

An Estimate is a probability distribution
most likely will get done at our estimate forced

can get done sooner if things work out

can take much longer, twice, three times as
long if things go poorly

Program Evaluation and Review Technique

PERT

Trivariate analysis
O - Optimistic Estimate

N - Nominal Estimate

P - Pessimistic Estimate

Expected duration Mue= (O + 4N + P)/6

Standard deviation (P - O)/6

Example

O - 1

N - 3

P - 12

Expected: 4.2 days

Standard Deviation: 1.8 days

Sequence Calculations Sequence expected Summation of each expected

Sequence deviation sqrt(sum of squares of deviations)

Wideband Delphi

Team of people assemble, discuss a task,
estimate the task, and iterate the discussion
and estimation until they reach agreement

Flying Fingers
Fingers below table and show on 3, if
agreement or close move on

Planning Poker see scrum planning poker

Affinity Estimation
Cards with the tasks written on them are silently
ordered by the team fromo smaller to larger left
to right
Once most cards settle, discuss disagreements

Assign bucket points to the cards

Trivariate Estimates Get three estimates, pessimistic, nominal and
optimistic
Can use any of the three approaches still

Law of large numbers
break up tasks into smaller tasks and estimate
them independently

Pressure

analogy
Don't want your surgeon to stop best practices
while under 'dead'lines

Avoid Pressures

Commitments
avoid committing to deadlines we can't meet

help the business meet goals set by others but
don't take ownership of the commitment

If we can't find a way to meet the promises
made by the business, then the people who
made the promises must accept the
responsibility

Stay Clean "quick and dirty" is an oxymoron Dirty always means slow

Crisis Discipline

How you behave in crisis shows what you truly
believe in

If you don't do TDD in crisis then you don't truly
believe it's helpful
If you make messes during crunch time, then you
don't truly believe messes slow you down

Choose the methods you feel comfortable
following in a crisis, then follow them all the
time.

Handling Pressure

Don't Panic
Don't stay up all night, sit and frett, or rush,
none of these things will help solve the
problems
Slow down and think the problem through

Communicate
Let your team and superiors know you are in
trouble
Discuss the best plans to get out of trouble, ask
for their input
Avoid creating surprises for anyone

Rely on your disciplines TDD more

Refactor harder

Get Help Pair Program!

Management / Mentorship

Teams & Projects
Does it Blend?

No such thing as a half of person

Gelled Team
takes time for a team to form

Magical about a gelled team
anticipate each other, cover for each other,
support each other, and deman the best from
each other

Which came first, Team or the Project? Team should not be formed around availability to
work on a project
Team should be first class decesion

Teams are harder to build than projects

Mentoring

Manuals
Good books, manuals, api's are great mentors
that can reach lots of people

Working with someone
learning how they work, their tricks, the best
that they know of how to do things

Hard Knocks

learning everything on your own most developers progress this way

very slow, very hard, not fun

Apprenticeship

Masters

10+ years of experience

lead of multiple projects

coordinate multiple teams

Maintain technical role by reading, studying,
practicing, doing and teaching

Journeymen

Trained, competent and energetic

Learn how to work well in teams and become
team leaders
Knowledgeable about current technology but
typically lack experience w/ many diverse
systems

Teachers
teach apprentices design principles, design
patterns, disciplines, and rituals

Apprentices/Interns

Graduates start here

Closely supervised by journeymen

Need intense pair programing

Ought to last a year

Craftsmanship

definition
someone who works quickly, but without
rushing, who provides reasonoable
estimates and meets commitments
knows when to say no, but tries hard to say yes

a professional

Convincing People

can't convince people to be crafstmen

can't convince them to accept craftmanship

Acceptance is not so much rational as much
emotional human thing

Make craftsmanship observable act as a role model

Tooling

What Bob Martin Uses

Source Control
Open Source tools are usually your best option

Enterprise controls usually suck
use open source throughout work, then check
into enterprise tool at the end of the iteration

2008 switched to GIT

IDE
VI old and vanishing as a coding tool

EMACS
Great general purpose tool, still not premier for
editing code

Eclipse/IntelliJ Bob uses IntelliJ

Issue Tracking Start small, grow as needed

Bob is using Pivotal Tracker

Continuous Builds Jenkins

If the build fails, stop the presses and resolve
the issue

Unit Testing Tools

JUnit

RSPEC foro Ruby

NUnit for .Net

Midje for Clojure

CppUTest for C(++)

Component Testing Tools

FitNesse (written by Bob)

Others

RobotFX

Green Pepper based on confluence?

Cucumber

JBehave

UML/MDA

Not worth it

Assumes the problem is code/design

wrong problem is in the details

try to UML the details, and you might as well
code the thing

No great diagramming language today that
solves real problems

The Clean Coder by Robert C.
Martin: Book Notes

http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata
http://thecleancoder.blogspot.com/2010/10/craftsman-62-dark-path.html
http://c2.com/cgi/wiki?PairProgrammingPingPongPattern
http://www.pomodorotechnique.com/
http://en.wikipedia.org/wiki/Law_of_large_numbers
http://www.mindmeister.com/
http://www.mindmeister.com/

